THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Characterization of nano-scale materials for interconnect and thermal dissipation application in electronics packaging

نویسنده

  • Xin Luo
چکیده

This thesis focuses on studies of nano-scale materials in electronic packaging applications with respect to following aspects: surface analysis of nano-scale oxide of lead-free solder particles, and thermal performance and mechanical property studies of nano-scale fiber and metal composite-based thermal interface materials. The composition and thickness of the solder oxide have a direct impact on the quality of interconnects and the reliability of a packaged system. The characterization of the nano-scale oxide of lead-free solder particles is investigated by transmission electron microscopy and scanning transmission electron microscopy. The solder powders are exposed to air at 150 C for 0, 120 and 240 h. The oxide thickness is 6 nm and 50 nm measured by scanning transmission electron microscopy for 0 h and 120 h samples, respectively. The increase in oxide thickness of solder particles is proportional to the rooting of the oxidation time. The intersection analysis method for analyzing Auger electron spectroscopy depth profiles is also presented which could be expanded to analyze oxide of other alloy, i.e. Cu, Ag or stainless steel. In the next part of this thesis, a new composite design consisting of electrospun polyimide fiber networks and infiltrated metal matrix is presented. Three composites are fabricated including polyimide fiber-InSnBi, polyimide fiber-indium and polyimide fiber-SnAgCu composites. The microstructure of the composite is investigated by scanning electron microscopy, energy dispersive X-ray detector and X-ray diffraction, showing a good bonding between the fibers and the metal matrix. These composites demonstrate high thermal conductivity, low thermal contact resistance and reliable thermomechanical performance during thermal cycling. The polyimide fiber-indium composites are sandwiched between chips and heat spreaders with different packaged sizes to detect the junction temperature and junction-to-case thermal resistance. The shear strength of the polyimide fiber-indium composite between Sn surfaces can reach 4 MPa which is larger than that with Au and Cu surfaces. All composites present good reliability during the humidity-heat aging tests. The polyimide fiber-indium composite’s ultimate tensile strength at 20 °C is five times higher than that of the pure indium, and the tensile strength of the composite exceeds the summation of those from its individual components. With the increase in temperature, the ultimate tensile strength declines but still precedes pure indium and the elongation at fracture increases. Contrary to most metallic materials, the ultimate tensile strength of the composite is inversely proportional to the logarithmic strain rate in a certain range. Finally, a new strengthening mechanism is presented based on mutually reinforcing structures formed by the indium and surrounding fibers, underlining the effect of compressing at the fiber-indium interfaces by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of nano-biocomposite films reinforced with nanofibrillated cellulose and montmorillonite as a potential application for Food packaging industry

In this study, polyvinyl alcohol- Nanofibrillated cellulose –Montmorillonite (PVA-NFC-MMT)and Ethylene-vinyl acetate- Nanofibrillated cellulose –Montmorillonite (EVA-NFC-MMT) nanocompositescontaining 2% weight of NFC and MMT were prepared by melt blending method. Then, the effect ofNFC and MMT as reinforcing materials on biodegradability, morphology, and mechanical, thermal an...

متن کامل

Current advancements in applications of chitosan based nano-metal oxides as food preservative materials

Objective(s): A remarkable growing effort has been conducted by several researchers to fabricate food packaging materials which are able to protect foodstuffs and enhance their shelf-life from food-borne pathogens and fungal attack which causes great damage to the food industries. Recent studies has focused on the potential applications of nano-metal oxides in food packaging area. Method...

متن کامل

PET/Mica nanocomposites for food packaging: crystallization behavior and mechanical properties

Nowadays polymer nanocomposites have introduced as a new class of food packaging materials due to their enhanced mechanical, thermal, and barrier properties. In this study PET nano composites were prepared by melt blending of poly (ethylene terephthalate) pellets and mica nanoparticles. The morphology of PET/mica nanocomposites was characterized by X-ray diffraction and transmission electron mi...

متن کامل

PET/Mica nanocomposites for food packaging: Crystallization behavior and mechanical properties

Nowadays polymer nanocomposites have introduced as a new class of food packaging materials due to their enhanced mechanical, thermal, and barrier properties. In this study PET nano composites were prepared by melt blending of poly (ethylene terephthalate) pellets and mica nanoparticles. The morphology of PET/mica nanocomposites was characterized by X-ray diffraction and transmission electron mi...

متن کامل

Co3O4 spinel protection coating for solid oxide fuel cell interconnect application

In the present study, electrophoretic deposition (EPD) method in different electric fields (30 – 300 V / cm) was used to apply Co3O4 spinel coating to SUS 430 as SOFC interconnect. The coated and uncoated specimens were pre-sintered in air at 800 and 900 °C for 3 h followed by cyclic oxidation at 700 and 800 °C for 500 h, respectively. X-ray diffraction analysis (XRD), Scanning Electron Microsc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014